
DIY with Open Source vs.
Commercial Video Player Approach
Navigating Cross-Platform Video
Playback Complexities

WHITEPAPER

TA
B

LE
 O

F

C
O

N
TE

N
TS

03INTRODUCTION

07

10

DIY with open source vs.
commercial video player approach

Pros and cons of both approaches
Time-to-market..

Reliability & testing...

Technical support levels...

Maintenance effort & total cost of ownership......................................

Cross-platform video playback is table stakes......................................03

The importance of a video player...04

Video player evaluation criteria..06

22Conclusion

23
24

Annex 1: Checklist

Annex 2: Overview of open source
and native video players
AVPlayer...

dash.js..

ExoPlayer...

hls.js..

Shaka Player..

Roku Video Node..

video.js...

12

15

17

19

24

24

25

25

26

26

27

Online video streaming is at the fingertips of users, available

anytime, anywhere, and on any device. Major streaming services

such as Netflix, YouTube, Peacock, Twitch, and others have set

industry benchmarks, shaping user expectations for platform

accessibility. Viewers have grown accustomed to the seamless

streaming experiences offered by these giants, irrespective of

their chosen devices.

To capture and retain user attention, streaming services must be

available across a spectrum of devices. Most Over-The-Top (OTT)

video services currently support over 10 platforms, ranging from

Web, Android, and iOS to big-screen devices like Samsung (Tizen),

LG (webOS), Hisense, Vizio, Chromecast, PlayStation, XBOX,

AndroidTV smart TVs and dongles, FireTV, Apple TV (tvOS) and

Roku, among others.

Introduction
Cross-platform video playback is table stakes

Figure 1: Most OTT video services currently support over 10 platforms

03

While delivering premium cross-platform video playback

experiences is expected, it remains a really complex challenge. It

can be tricky to account for all the video playback variables,

including different devices, platforms, operating systems,

programming languages, screen sizes, design requirements, and

varying network conditions.

Serving as the “face” of your streaming backend, the video player

has a profound impact on user experience. It can effectively mask

potential backend issues from viewers, and influence critical

parameters for the experience such as channel change times,

latency and buffering. Moreover, the video player is heavily

integrated with your user interface, or even contains the building

blocks for it.

Integration with content protection, analytics, advertising, and

other peripheral services further adds to the complexities. The

video player plays a central role in security, integrating with

authentication and DRM systems. It is also instrumental in driving

advertising revenue, integrating with both Client-Side Ad Insertion

(CSAI) and Server-Side Ad Insertion (SSAI) systems, ensuring the

smooth transition of ads and accurate firing of ad beacons for

The importance of a video player tracking, a critical aspect as inaccuracies in ad beacon firing can

lead to revenue loss.

Moreover, the video player acts as a vital data source for analytics

and measurement systems, offering insights into viewer behavior,

content effectiveness, and customer loyalty. Inadequate

monitoring can compound these challenges, leaving you blind to

critical performance issues, or chasing phantom problems,

hindering optimization efforts and impacting viewer satisfaction.

Last but not least, the video player contributes significantly to the

overall reliability and resilience of your streaming service, actively

participating in content steering and backup stream

implementation.

04

Figure 2: The technical complexity of delivering exceptional video playback experiences cross-platform

05

Acquisition

Live

Encoder

Multi DRM

Widevine

PlayReady

FairPlay

SSAI/CSAI

VAST/OMID

Google IMA

...

Transcoder Packager Origin

WIFI

3/4/5G

Playback

DRM Analytics Advertising

Preparation
Delivery

HLS, MPEG-DASH, HESP
Multiscreen Apps

As the video player plays such an important role, media and

entertainment companies either want full control over this crucial

component or want to work with a strong knowledgeable partner.

When choosing the right video player method for your streaming

service involves careful consideration including several key factors:

1.Time-to-market.

Integration is a key consideration, as it determines the time-to-

market. It encompasses not only the ease of integrating the player

itself but also the incorporation of external services such as ads,

analytics, and DRM, and the use of development frameworks such

as React Native and Flutter. While some players offer connectors

and bridges, thorough testing of these combinations is often

overlooked, potentially leading to unforeseen issues, and a

prolonged time-to-market.

2. Reliability & testing.

Testing is a critical aspect of ensuring the reliability and

functionality of the video player. A robust testing setup is

essential, whether conducted internally, externally, by a video

player vendor or via open-source communities. A glitchy or

malfunctioning player can lead to a poor viewer quality of

experience, a major deterrent for retaining viewers. Viewers

expect a video player which just works, and which provides a

consistent high-quality video playback behavior cross-platform.

3.Technical support levels.

Bugs and issues are inevitable. When problems arise, it's crucial to

know where to seek technical support—whether from your in-

house team or an external provider. Swift issue resolution is

essential to ensuring a premium experience for your viewers.

4. Maintainability & total cost of ownership.

Video player maintenance is often an overlooked but vital aspect.

The streaming world is always changing, with new operating

systems, platforms, and devices popping up. Putting a video player

in place is just the starting point. As streaming technology

advances, updates and new features can make things complicated.

Remember, everything you create needs ongoing maintenance,

which is a big part of the overall cost.

Video player evaluation criteria

06

Media and entertainment companies usually choose between two

video playback approaches:

 Building their own video playe

 Buying a commercial video player

Some companies choose the building approach with the do-it-

yourself (DIY) route, leveraging open source and native video

players for cross-platform video playback. Open source players

are free, and offer flexibility and customization, while native

players, the default for specific platforms, are also cost-free but

closed source. There are various open source and native video

players, each with its specific platform focus, feature set, and APIs.

The below visual shows platform support for common open

source and native video players. A more detailed overview of

open source and native video players can be found in Annex 2.

DIY with open source vs.
commercial video player approach

07

AV Player dash.js ExoPlayer hls.js Shaka

Player

Roku

Video

Node

video.js THEOplayer

Officially supported

Compatibility expected

Figure 3: Platform support overview of open source/native video players, and a commercial video player (updated in April 2024)

08

- -
- -

-

- -

- -

-

-

--

-

- -

-

-

--
-

- -

- -

-

-

--

- -

-

-

- -

- -

-

-

--

- -

- -

-
-

-

--

- -

- -

-

-

--

- -

Alternatively, companies that select the buying approach seek a

solution that simply 'works', avoiding technical complexities and

ensuring peace of mind. Commercial video players typically

provide a high viewer quality of experience (QoE) across various

devices and platforms through a suite of core playback SDKs

designed for cross-platform video playback.

For example, THEOplayer was built from the ground up for high

performance and complete control of the AV pipeline, the video

playback core of these SDKs is closed source. However, some of

the components are open source, including the user interface,

connectors for third-party content protection, analytics, and

advertising solutions, as well as bridges for development

frameworks such as React Native and Flutter.

Figure 4: A commercial video player typically consists of a closed source video playback core, and it may additionally
contain open source connectors, an open source user interface and open source React Native & Flutter bridges

09

User Interface (UI Framework)

In this section we'll compare the DIY approach with open source

and native video players against the commercial video player

approach, weighing their respective pros and cons. The table

below provides a summary for each decision criteria, with further

elaboration provided in subsequent subsections.

Pros and cons of both approaches

10

DIY with open source

& native video players

Time-to-market

Reliability &
testing

Maintainability &

Total cost of
ownership

Commercial video players

Long time-to-market as each open source &
native video player has its own set of APIs and
user interface. Custom integrations are needed
for DRM, ads and analytics solutions, and also
for React Native and Flutter bridges.

A single set of APIs cross-platform, ready-
made DRM, ads and analytics connectors, a
comprehensive open source UI, and React
Native & Flutter bridges accelerate time-to-
market. Note that the availability of these items
varies among commercial video players.

Only platforms officially supported are tested
by the open source video player teams. The
testing focuses on the player only, not the
broader ecosystem such as integrations with
DRM, analytics and ads solutions. Moreover,
open source video players often show black
screens or stalls when doing ad transitions.

Leading commercial video player vendors
maintain dedicated test labs to rigorously
assess video playback performance for new
OS releases across diverse platforms and
scenarios. The extent of automated testing
and platform coverage may vary among
commercial video player vendors.

Open source and native video players are
free, but they bring a high implementation
and maintenance cost, resulting in a high
total cost of ownership.

The commercial license fee is typically
offset by substantial reductions in
implementation and maintenance efforts,
lowering the total cost of ownership.

Technical
support levels

Dependency on community support can
cause delays in addressing issues and
developing new features. The contributions
for open source video players are
concentrated on only 1-3 persons.

Dedicated in-house developer teams
specialized in Android, iOS, web/HTML5 and
Roku usually offer support, ensuring issues
get solved quickly, and new features are
proactively implemented.

Figure 5: Pros & cons of open source and commercial video players

11

Launching an OTT app across platforms can be a lengthy process

when relying on multiple open-source and native video players.

Each player has its own platform support, feature set, APIs, and

developer documentation, complicating the integration process.

Media and entertainment companies opting for a DIY approach

with open-source and native video players often face challenges

in achieving comprehensive cross-platform coverage. Although

open source video players officially support certain platforms, it's

essential to recognize that some may only provide community

support for select platforms or versions. While these platforms

are anticipated to function, they may lack official testing by the

video player team.

Furthermore, companies must develop their own connectors to

integrate third-party solutions for content protection, analytics,

and advertising. This is crucial for business operations, such as ad

placement and data insights, or to meet legal requirements for

content protection and DRM.

In the context of development frameworks like Flutter and React

Native, the complexity is compounded. Here, you need to create

Time-to-market

12

your own bridges for each of the different video players,

considering their specific features and connectors for third-party

content protection, analytics, and advertising solutions, requiring

native development again. For media and entertainment

companies relying on a talented pool of Flutter / React Native

developers, this means either compromising on functionality or

hiring external expertise.

Overall, the various integration requirements, from multiple

player APIs to building custom connectors, collectively contribute

to extended time-to-market for OTT apps when using open-

source and native video players.

In contrast, commercial video players typically offer a unified set

of APIs across their SDKs, simplifying integration across various

platforms. Commercial solutions often also provide official

support for every platform. Unlike open source players that rely

on community support or anticipate compatibility for certain

platforms, commercial solutions typically undergo comprehensive

testing across all platforms. This includes smart TV platforms such

as HbbTV, Vizio, WebOS (3.0+), Tizen (2.3+), and FireTV, where

thorough investigation, continuous testing, and bug fixes are

conducted to guarantee seamless functionality and optimal

performance.

Moreover, some commercial video players also offer additional

benefits that accelerate the time-to-market for your OTT video

app.

Firstly, commercial video players can already incorporate open

source connectors to ensure integration efficiency and flexibility.

These range from connectors for content protection solutions to

open source connectors for analytics solutions. Additionally, open

source connectors for advertisement solutions are sometimes

also available. These connectors play a pivotal role in accelerating

the time-to-market of OTT apps, as media and entertainment

companies do not have to build these integrations themselves.

Secondly, certain commercial video player solutions also include

React Native and Flutter bridges. These bridges enable you to

further accelerate time-to-market through easily porting your

video pipeline across platforms, and additionally extending

compatibility to Web-based platforms such as Samsung’s Tizen,

LG’s webOS, and Vizio. Building React Native and Flutter bridges

can be challenging and time consuming, as it requires native

development again, so having these bridges available out-of-the-

box, and maintained by a commercial video player team is a real

time saver.

13

Figure 6: When porting your video pipeline with React Native using open
source video players, you often run into native development for
premium features and connectors, extending time-to-market.

This open source nature allows media and entertainment

companies to easily modify the video player's appearance by

customizing each user interface component, including the play

button, time display, progress bar, picture-in-picture button, etc.

Despite being open source, the UI is typically actively maintained

by the vendor, ensuring ongoing updates and improvements,

emphasizing a commitment to keeping the user interface

functional across platforms.

Thirdly, it’s also possible that a commercial video player offers a

comprehensive open source UI, typically much more advanced

than the UIs provided by open source and native video players.

Building a video player user interface from scratch takes time and

requires expertise in different platforms, and hence programming

languages. This complexity compounds because of different form

factors (e.g. small vs big screen), different layouts (e.g. portrait vs

landscape mode), different input devices (fingers vs remotes vs

mouse & keyboard), different localization requirements (e.g.

subtitle languages), as well as accessibility requirements.

Commercial video player vendors which have optimized their

open source UI to adapt to these diverse scenarios, really make it

easy for media and entertainment companies to build a cross-

platform UI.

As an example, THEO’s Open Video UI brings an extensive set of

available components cross-platform, which makes it easy for

media & entertainment companies to customize, saving them

from the complexities of creating and maintaining their own video

player UI, so that they can focus resources on their own branding.

14

Open source video players have become popular for their

transparency and community-driven development. They offer a

solid foundation for media and entertainment companies that

desire complete control over their video player's source code to

tailor it to their unique requirements. With full access to the code,

it’s even possible for media and entertainment companies to

make changes to the core playback engine, fine-tuning elements

like Adaptive Bitrate (ABR) and buffer management for specific

devices and markets. However, this path is less traveled, as it

demands considerable expertise, in-depth video streaming

knowledge, and rigorous testing to guarantee optimal viewer

experiences across various platforms.

Testing is a significant part when launching or updating your

streaming service. When you’re using open source or native video

players, the job of testing lands on your shoulders. Supporting

multiple platforms adds an extra layer of complexity. How do you

effectively test across all these platforms and devices, considering

the diverse streaming conditions? It's a time-consuming task that

directly impacts viewer experience. Whereas many media and

entertainment companies still perform manual testing, either

internally or externally, by a third-party vendor, some have

already invested in automated testing scenarios.

Reliability & testing This is where a commercial video player can excel, as certain

commercial video player vendors maintain dedicated test labs

where they rigorously assess video playback for new OS releases

across various platforms. This extensive testing covers different

scenarios, including live streaming, video-on-demand (VOD),

restart functionalities, subtitle styling, digital rights management

(DRM), license handling, server-side ad insertion (SSAI), and more.

The testing also includes combinations with connectors and

bridges, to cover for new versions of third-party libraries. A

rigorous testing process not only speeds up your time-to-market

but also brings you peace of mind and even more confidence.

15

Figure 7: Commercial vendors can maintain dedicated test labs for rigorous video playback testing

Some commercial video players also excel in optimizing Quality of

Experience (QoE) by ensuring fast startup/channel change time,

and employing optimized Adaptive Bitrate (ABR) and buffer

management algorithms. Most media and entertainment

companies opt to leverage these pre-optimized algorithms,

recognizing the expertise and thorough testing required to ensure

optimal viewer experiences across diverse platforms.

Lastly, the best-of-breed commercial video players also support

seamless advertisement transitions. Unlike open-source players,

which lack dedicated ownership for seamless integration,

challenges may arise when integrating Server-Side Ad Insertion

(SSAI) in combination with Digital Rights Management (DRM).

These challenges can lead to issues such as black screens or

buffering during transitions. However, some commercial video

players offer optimized ad insertion capabilities. This ensures

smooth transitions, even on older smart TVs and between DRM-

protected video content and clear ads. Seamless advertisement

transitions are crucial for enhancing advertising CPM, especially

with the growing prominence of FAST and AVOD services.

16

Technical support levels Examples

 For dash.js, the development is managed by DASH-IF on a

rotating contract basis. From January to March 2024 about 49

commits were submitted to the project, of which 32 originated

from the person supported by that contract

 Recently ExoPlayer's development on GitHub seems to have

slowed, possibly influenced by its integration into the AndroidX

library. However, also in this library, the number of commits

has decreased

 While most of the original hls.js developers and supporters

over the years have left the project, Apple hired a number of

them to maintain the project. The number 1 committer on the

project is a bot, which means only 2 people have been actively

involved in the last three months

 60% of the Shaka Player commits originated from a single

person in the period from January to March 2024

 The majority of the hls.js commits over the same period were

performed by 2 contributors.

Relying on the community for bug fixing and handling feature

requests is a common challenge associated with open source

video players. While these video players offer transparency and

community-driven development, the dependency on community

support can cause delays in addressing issues and developing

new features.

Additionally, for many open source video players, the

contributions are very concentrated. Typically, a small group of

1-3 contributors is responsible for over 50% of the commits. This

concentration can impact the responsiveness to issues, requiring

media and entertainment companies to build internal knowledge

about each open source video player, to be able to create their

own pull requests when an urgent issue comes up.

17

Figure 8: 60% of the Shaka Player commits for the last 3 months (January - March 2024) originated from one person

18

Both open source and native video players offer a clear

advantage: they are license-free, allowing developers to integrate

them into their OTT apps without any upfront costs.

For projects with a singular platform focus, open source video

players can be cost-effective. The integration of just one open

source or native video player doesn’t have the complexities of

cross-platform video playback. In contrast, when having to

implement multiple open source and native video players, each

with its specific platform focus, feature set and APIs, it’s important

to not only consider the license fee but also the implementation

and maintenance complexity and associated effort, to determine

the total cost of ownership.

 Alignment with industry trends, such as EXPO support for

React-Native, ensuring compatibility and forward-thinking

adaptability

 Client-side ad insertion that seamlessly integrates across all

platforms, including smart TVs and Chromecast

 Integrations with Server-side ad insertion platforms to

facilitate client-side beaconing and even click-through

functionalities.

Conversely, opting for a commercial video player brings the

significant benefit of accessing professional support from a team

of video experts. With dedicated in-house developer teams

specializing in Android, iOS, web/HTML5, and Roku, your bugs and

issues get solved faster, effectively minimizing the negative

impact.

A commercial video player team stands ready to offer ad hoc

assistance and will ensure future evolutions of features and

devices. Their experts usually bring end-to-end advisory support,

not just for the video player. This brings a dynamic and responsive

partnership as your video services evolve.

Moreover, commercial video player vendors often invest in

premium features designed to enhance the streaming experience

and simplify operations. These include, for example

 Extensive features such as Chromecast and Airplay support,

offline playback, background playback, picture-in-picture,

Android Media Sessions, and more

 Cross-platform framework support like React-Native and

Flutter, enabling a unified codebase for iOS, Android, and Web

applications.

Maintenance effort &
total cost of ownership

19

 Solving issues is not all, the complexity grows when

considering necessary upgrades to new versions of platforms

(such as iOS/Android/Tizen releases) and new versions of third-

party libraries (Google Cast SDK, IMA SDK, OMID SDK, analytics

libraries, etc.). This further increases the need for personnel,

adding to the overall costs of the DIY approach.

In contrast, choosing a commercial video player approach

includes support from an experienced video player engineering

team that develops for the largest OTT streaming services. These

experts not only handle the maintenance of the video player core

but also oversee open source components like the user interface,

connectors, and React Native and Flutter bridges.

Considering that the most substantial streaming service cost lies

in hiring experienced engineers for development, quality

assurance and design, adopting a commercial video player results

in an overall reduction in the total cost of ownership. This allows

media and entertainment companies to reassign experienced

video engineers from routine video player maintenance tasks to

more strategic projects. This not only optimizes the use of

experienced video engineers but also empowers them to engage

in projects that foster innovation and align with broader

organizational goals.

While open source and native video players may seem cost-

effective initially, as they come without licence costs, taking a do-

it-yourself (DIY) approach for cross-platform video playback

typically results in a higher total cost of ownership as the most

significant expense in operating a streaming service lies in hiring

skilled engineers for development, quality assurance (QA), and

design.

Not only the integration effort requires additional FTEs, but the

open source video player approach also comes with an ongoing

high maintenance burden:

 For instance, if you are supporting over 10 different platforms

with different models and versions, you would spend several

hours testing each release for every platform. In the end, you

may find yourself needing one or more full-time equivalents

(FTEs) solely dedicated to testing, definitely for platforms not

officially supported by open source video players.

 Maintenance further demands developers who can

understand the code for each specific platform. In many cases,

this involves having developers with expertise in Android (Java/

Kotlin), iOS (Swift, Objective C), web/HTML5 (JavaScript/

TypeScript), and Roku (BrightScript) on staff. These resources

are needed, at least in part, for solving bugs and issues in time.

As a result, this dynamic adds a few more FTEs to the

maintenance effort.

20

In the media and entertainment industry, there's a growing focus

on cost-efficient approaches for video operations. Despite its

license fee, a commercial video player brings significant

advantages in this respect, by speeding up time-to-market and

easing maintenance efforts.

Open Source Video Players

Total Cost of Ownership

Initial

Development

Initial

Development

Licensing fee

Ongoing

Maintenance

Ongoing

Maintenance

Cost Savings

Commercial Video Players

Figure 9: Doing cross-platform video playback with a commercial video player brings a
lower Total Cost of Ownership compared to an open source video player approach.

21

When deciding between a DIY and commercial video player

approach, your decision should align with your project's specific

requirements and expertise. While the DIY approach may work

well for projects with a singular platform focus, the complexities

of cross-platform development inevitably lead to higher

integration and maintenance effort when going the DIY route.

Building your own cross-platform video player based on open

source is a product, not a project. You know that you’ll be

modifying things forever.

A commercial video player brings the fastest and most cost-

efficient way to deliver premium video experiences cross-

platform. Thanks to rigorous cross-platform testing, it brings a

high-quality playback solution that simply works. Moreover, it

significantly accelerates time-to-market and minimizes

maintenance effort thanks to pre-made DRM, ads and analytics

connectors, premium features, React Native and Flutter bridges, a

unified set of APIs across platforms and official support for all

platforms. Despite the perceived upfront cost, opting for a

commercial video player reduces the total cost of ownership in

the long run.

Conclusion
By freeing up in-house video engineers from routine maintenance

tasks, a commercial video player also enables media &

entertainment companies to focus on strategic initiatives that

drive innovation and align with business objectives. This shift not

only addresses immediate needs but also supports long-term

profitability goals, reflecting the current industry focus on

sustainable growth and innovation.

For FAST and AVOD services, a commercial video player will also

help boost advertising revenue by reaching and monetizing more

platforms.

22

Searching for a commercial video playback solution? Below are 20

questions to consider when choosing a video player for your

cross-platform OTT app.

Which platforms does the video player officially support, and does this

align with my needs?

What level of support is provided (e.g., community support, dedicated

support team, end-to-end advisory), and does this align with my needs?

Is it possible to ensure code re-use with development

frameworks such as React Native to maximize efficiency?

Does the video player vendor perform testing, and which scenarios are

covered as part of these tests?

How can I avoid video player vendor lock-in? If it doesn't work, how fast can I

switch or change?

How far back does the version support go for the respective platforms?

Does the video playback solution simplify and reduce costs for my OTT video

service in the future?

Is my streaming stack supported (e.g., MPEG-DASH, HLS, CMAF-

CTE, LL-HLS, HESP)?

Does the video player make it easy to measure and gain insights into QoE?

How will I monetize my service, what is required to maximize that, and how

does the video player contribute?

Which technology should be used for these platforms (e.g., Swift,

Kotlin, React, React Native, Flutter), and does the player support it?

Does the video player vendor regularly maintain the video player, its user

interface, bridges, and/or connectors with other solutions?

How can I stand out with my video player user interface, and how easy

is it to build that experience cross-platform?

Which other solutions do I currently have in place, and will it be easy to integrate

the video player with them?

Could the video player maximize ad revenue through reaching new platforms

and/or optimizing ad transitions?

What makes my OTT video service unique, and how will the video player ensure I

can focus on this?

Does the video player support all features needed (e.g., offline

playback, Android media sessions)?

How does the video playback solution ensure a high QoE?

Does the video player have out-of-the-box support for the user

interface, or should I build it from scratch?

Does the video player have support for DRM, and how easy is it to get started

with third-party DRM solutions?

What will be the Total Cost of Ownership of the video playback solution?

Annex 1: Checklist

23

What will be the Total Cost of Ownership of the video playback solution?

Annex 2: Overview of open source and
native video players

AVPlayer is the default native video player provided by Apple on

iOS and tvOS devices. Actively maintained by Apple, AVPlayer is

designed specifically for the playback of HLS content. With rich

features, it provides support for Low-Latency HLS (LL-HLS) and

additional functionalities like offline playback. In addition, it has a

UIKit that allows you to easily build a user interface.

Note that AVPlayer exclusively supports Apple's HLS format and

its FairPlay DRM. It lacks support for other streaming protocols

like MPEG-DASH, and alternative DRM solutions (but those are

not available with hardware decryption on iOS anyway).

dash.js is the official reference player from the DASH Industry

Forum (DASH-IF), designed for playing MPEG-DASH content. It's a

JavaScript-based player using Media Source Extensions (MSE) and

Encrypted Media Extensions (EME). It officially supports browsers

and also works on other Web-based platforms, although MSE/

EME-capable smart TVs and gaming consoles have not been

tested.

This open source player has features like CMCD, CMAF low latency

support, and compatibility with various subtitle formats (TTML,

IMSC1, WebVTT). It also has a basic user interface.

AVPlayer dash.js

24

What will be the Total Cost of Ownership of the video playback solution?

ExoPlayer, a Google-maintained open source video player for

Android, offers platform support for Android mobile devices,

Android-based smart TVs, and Android-based set-top boxes.

While not officially supported on FireOS, version 5 and above

should be compatible.

This feature-rich player includes support for playlists, client-side

and server-side ad insertion, DRM-protected playback, and a basic

user interface. Additionally, ExoPlayer is equipped to handle

various adaptive streaming formats, including MPEG-DASH, HLS,

CMAF, and LL-HLS.

The latest version of ExoPlayer is now part of AndroidX Media,

residing under a new package name. All future developments will

be consolidated within this project.

hls.js is an open source JavaScript library that implements an

HTTP Live Streaming (HLS) client. It relies on HTML5 video and

MediaSource Extensions (MSE) for playback. Specializing in HLS/

LL-HLS streams, it does not support MPEG-DASH as a format.

It supports most common browsers and other modern MSE/EME

capable devices. However, the compatibility details with Web-

based smart TVs and gaming consoles are not specified.

hls.js is equipped with various features, including CEA-608/708

captions, WebVTT subtitles, a basic user interface, as well as

alternate audio track rendition.

ExoPlayer hls.js

25

What will be the Total Cost of Ownership of the video playback solution?

Shaka Player is an open source video player, formerly developed

by Google and currently the default player for Chromecast

applications. Operating within an HTML5 environment, it utilizes

MediaSource Extensions (MSE) and Encrypted Media Extensions

(EME) to play MPEG-DASH and HLS formats.

Compatible with HTML5-based platforms, Shaka Player officially

supports common browsers, XBOX One, Chromecast, and Tizen

3.0+. The Shaka Player support matrix also includes platforms like

WebOS, Tizen 2.4, and PlayStation 4 & 5, however, these platforms

are community supported and untested.

Shaka Player offers features like offline playback, low latency

video playback via LL-HLS, and an optional user interface library.

Shaka Player
The Roku Video Node is the default player for Roku. It uses

BrightScript as a programming language, which can present

challenges in finding developers familiar with it.

The native video player has a limited API and capabilities. It lacks

features such as low latency video playback, and its support for

streams is highly specific, leading to restrictions on HLS/DASH

versions, GOPs, and segment durations. Additionally, it has its

own approach for generating thumbnails, and steering Adaptive

Bitrate (ABR) algorithms or buffers is not possible with this player.

Roku Video Node

26

What will be the Total Cost of Ownership of the video playback solution?

Video.js is an open source HTML5 video player that supports

video playback on desktop and mobile browsers. Additionally, it

also supports web-based smart TVs and other platforms, although

specific details about supported devices are not provided.

Launched in mid-2010, the project was mainly sponsored by

Brightcove.

What sets video.js apart is its modular architecture, with many

functionalities separated into plugins. This modular design allows

developers to share customizations, incorporating features like

thumbnails, VR support, and Chromecast integration.

In terms of format support, video.js supports both (LL-)HLS and

DASH playback.

video.js

27

Get in contact with one of our video experts

WWW.THEOPLAYER.COM/CONTACT-US
WWW.THEOPLAYER.COM

About THEO Technologies

At THEO Technologies, we are shaping the future of
entertainment by providing high-quality video
streaming technology. Our mission is to simplify
video operations, empowering developers to easily
integrate high-quality video into their applications.

INTERESTED IN LEARNING MORE
ABOUT BUILDING YOUR VIDEO
PLAYER STRATEGY?

DIY with Open Source vs.

Commercial Video Player Approach

WHITEPAPER

https://WWW.THEOPLAYER.COM/CONTACT-US
https://WWW.THEOPLAYER.COM

